Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Lehmann, M. S. & Larsen, F. K. (1974). Acta Cryst. A30, 580-584. Nardelli, M. (1983). Comput. Chem. 7, 95-98.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 1193-1198

Effects of Cation Interactions on Sugar Anion Conformation in Complexes of Lactobionate and Gluconate with Calcium, Sodium or Potassium

Michał W. Wieczorek,^a Jarosław Błaszczyk^a and Bogusław W. Król^b

^aInstitute of Technical Biochemistry, Technical University of Łódź, Stefanowskiego 4/10, 90-924 Łódź, Poland, and ^bInstitute of Chemical Technology of Food, Technical University of Łódź, Stefanowskiego 4/10, 90-924 Łódź, Poland

(Received 11 January 1995; accepted 19 August 1995)

Abstract

In the investigated compounds, the tetrahydrated calcium chloride salt of lactobionic acid $(Ca^{2+}, -Cl^-, C_{12}H_{21}O_{12}^-, 4H_2O)$, potassium lactobionate $(K^+, -C_{12}H_{21}O_{12}^-)$, sodium lactobionate monohydrate $(Na^+, -C_{12}H_{21}O_{12}^-, H_2O)$ and calcium galactonate hydrate $(Ca^{2+}, 2C_6H_{11}O_7^-, 5H_2O)$, the cations and hydrogenbonding systems have a strong influence on the geometries and conformations of the carbohydrate anions.

Comment

As a part of an extensive study of the influence of the cation on the conformation of the lactobionate or gluconate anions in carbohydrate–cation complexes (Lis, 1981, 1984; Jeffrey & Fasiska, 1972; Panagiotopoulos, Jeffrey, La Placa & Hamilton, 1974; Cook & Bugg, 1973), we have determined the crystal and molecular structures of the tetrahydrated calcium chloride salt of lactobionic acid, (1), potassium lactobionate, (2), sodium lactobionate monohydrate, (3), and calcium galactonate hydrate, (4). They are of the type of carbohydrate complex in which interactions between the cation and the carbohydrate anion play an important role in a number of physiological processes (Angyal, 1980; Krestinger & Nelson, 1976; Bugg, 1973). X-ray data of

structures containing a lactobionate or a galactonate anion have been available only for the bromide analogue of (1) (Cook & Bugg, 1973).

The asymmetric part of the unit cell of (1) comprises one lactobionate and one Cl⁻ anion, one Ca²⁺ cation and four water molecules. The Ca²⁺ ion binds to three water molecules (O2W, O3W and O4W) and to two lactobionate ions, by O8, O9 and O10 of the first anion and by O7 and O12 of the second symmetry-related anion (Fig. 1). Table 3 presents the intermolecular hydrogen bonding with $H \cdots O$ distances not greater than 2.20 Å. The contacts of the Cl⁻ ion and O1W water molecule with the lactobionate moiety are depicted in Fig. 1.

Fig. 1. The environment of the Ca²⁺ cation in (1) showing 50% probability displacement ellipsoids.

Comparison of (1) with the bromide analogue (Cook & Bugg, 1973) shows that the structures are very similar. The bromide analogue crystallizes in the same space group, with similar cell constants. The geometries about the Ca^{2+} ion and the conformations of the

lactobionate moieties are almost identical (Cambridge Structural Database, 1993).

The environment of the K⁺ cation in (2) is shown in Fig. 2 and described in detail in Table 2. The asymmetric part of the unit cell of (2) contains one K⁺ cation and one lactobionate anion. The K⁺ cation binds to four lactobionate anions, by O5, O8 and O11 to the first anion, by O2*a* and O7*a* to the second, and by O11*b* and O12*c* to the next two symmetry-related anions. For clarity, Fig. 2 show only part of the environment around the K⁺ cation.

Fig. 2. The environment of the K⁺ cation in (2), with the intramolecular hydrogen-bonding system in the lactobionate moiety. Displacement ellipsoids are shown at the 50% probability level.

The crystal lattice of (2) shows the characteristic intermolecular hydrogen-bonding system. Three intramolecular hydrogen contacts, O8—H8···O1, O9— H9···O11 and O3—H3···O2, with distances smaller than 2.20 Å, are found (Fig. 2, Table 3).

Fig. 3 shows the lactobionate (3). One lactobionate anion, one Na^+ cation and one water molecule constitute the asymmetric part of the unit cell. The Na^+ cation binds to three lactobionate anions, by O1, O4, O6 and

Fig. 3. The environment of the Na⁺ cation in (3), with one strong intramolecular hydrogen bond in the lactobionate moiety. Displacement ellipsoids are shown at the 50% probability level.

O9 to the first anion, and by O7a, O12a and O5b to two symmetry-related anions (Fig. 3).

There is one hydrogen contact, O9—H9…O11, with an H…O distance shorter than 2.20 Å (Fig. 3, Table 3). The O1W water molecule binds to atom O8 of the lactobionate moiety (hydrogen contact O1W—H1W…O8, Table 3).

The asymmetric part of the unit cell of (4) contains one galactonate anion, one Ca^{2+} cation and three water molecules (atoms Ca and O3W are in special positions in the unit cell). The environment of the Ca^{2+} cation is depicted in Fig. 4. The Ca^{2+} ion binds to two symmetrical gluconate anions (by O2 and O12 in both molecules) and to three water molecules, O3W, O1W and symmetry-related O1Wa. The galactonate anion adopts an almost planar zigzag carbon-chain configuration. Torsion angles are given in Table 4.

Fig. 4. The environment of the Ca^{2+} cation in (4). Displacement ellipsoids are shown at the 50% probability level.

Analysis of hydrogen contacts shorter than 2.20 Å did not show any intramolecular hydrogen bonds. However, in the crystal lattice of (4), two strong intermolecular hydrogen contacts are seen: O4— $H4\cdots O12$ and O1W— $H2W1\cdots O3$ (Table 3).

The present X-ray analyses of (1)-(4) show that both the nature and environment at the cation strongly influence the geometry and conformation of the carbohydrate anion. The different cations in the crystal lattices of (1)-(3) and their different binding to the carbohydrate anions have a strong influence on conformation of the lactobionate anion (Table 4), in particular on the conformation of the six-membered rings, which are in differently deformed chair forms (Table 5).

Experimental

Synthesis of (1) was carried out by the reaction of calcium lactobionate and calcium chloride (molar ratio 1:1.2) in a water solution for 2 h at 333 K (Król, 1986). Recrystallization was from water. The sodium and potassium lactobionates, (2) and (3), were obtained by the neutralization of lactobionic acid by sodium and potassium carbonates, respectively, concentration of the obtained solution to 65% mass fraction and crystallization from a water solution for 12 h at 323 K. Synthesis of the calcium galactonate (4) was carried out by electrochemical oxidation of galactose in the presence of calcium carbonate. Recrystallization was from water for 24 h at 293 K (Frush & Isbell, 1963).

Compound (1)

Crystal data

Ca²⁺.Cl⁻.C₁₂H₂₁O₁₂⁻.4H₂O $M_r = 504.9$ Orthorhombic $P2_12_12_1$ a = 8.2498 (9) Å b = 15.046 (2) Å c = 16.450 (1) Å V = 2041.9 (4) Å³ Z = 4 $D_x = 1.643$ (2) Mg m⁻³

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North, Phillips & Mathews, 1968; Frenz, 1986) $T_{min} = 0.676$, $T_{max} =$ 0.997 2136 measured reflections 2024 independent reflections

Refinement

Refinement on F R = 0.0515 wR = 0.0595 S = 0.788 1861 reflections 274 parameters H atoms: see below w = $1/[\sigma^2(F) + 0.01F^2]$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.639$ e Å⁻³ $\Delta\rho_{min} = -0.401$ e Å⁻³

Compound (2)

Crystal data $K^*.C_{12}H_{21}O_{12}^ M_r = 396.4$ Orthorhombic $P2_{12}2_{1}^2$ a = 8.7037 (9) Å b = 8.7037 (9) Å c = 21.055 (2) Å V = 1595.0 (5) Å³ Z = 4 $D_x = 1.651$ (2) Mg m⁻³ Cu $K\alpha$ radiation $\lambda = 1.54184$ Å Cell parameters from 25 reflections $\theta = 18.5-25.6^{\circ}$ $\mu = 4.61 \text{ mm}^{-1}$ T = 293 KPlate $0.47 \times 0.35 \times 0.22 \text{ mm}$ Colourless

1861 observed reflections $[I > 3\sigma(I)]$ $R_{int} = 0.0331$ $\theta_{max} = 75^{\circ}$ $h = 0 \rightarrow 10$ $k = 0 \rightarrow 18$ $l = 0 \rightarrow 20$ 3 standard reflections frequency: 60 min intensity decay: 0.4%

Extinction correction: SHELXTL/PC (Sheldrick, 1991) Extinction coefficient: 0.007 (1) Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Cu $K\alpha$ radiation $\lambda = 1.54184$ Å Cell parameters from 25 reflections $\theta = 20.8-29.5^{\circ}$ $\mu = 3.56$ mm⁻¹ T = 293 K Bipyramidal trigonal $0.55 \times 0.30 \times 0.30$ mm Colourless

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North, Phillips & Mathews, 1968; Frenz, 1986) $T_{min} = 0.896$, $T_{max} =$ 0.999 3613 measured reflections 3289 independent reflections

Refinement

Refinement on F R = 0.0409 wR = 0.0492 S = 0.823 3283 reflections 248 parameters H atoms: see below w = 1/[$\sigma^2(F)$ + 0.0073F²] (Δ/σ)_{max} = 0.016 $\Delta\rho_{max}$ = 0.805 e Å⁻³ $\Delta\rho_{min}$ = -0.751 e Å⁻³

Compound (3)

Crystal data Na⁺.C₁₂H₂₁O₁₂⁻.H₂O $M_r = 398.3$ Orthorhombic $P2_{12_{1}2_{1}}$ a = 9.2358 (9) Å b = 10.4021 (6) Å c = 16.7994 (5) Å V = 1613.9 (2) Å³ Z = 4 $D_s = 1.639$ (2) Mg m⁻³

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 1932 measured reflections 1857 independent reflections 1818 observed reflections $[I > 3\sigma(I)]$

Refinement

Refinement on *F R* = 0.0320 *wR* = 0.0574 *S* = 1.358 1818 reflections 237 parameters H atoms: see below *w* = $1/[\sigma^2(F) + 0.001627F^2]$ $(\Delta/\sigma)_{max} = 0.034$ $\Delta\rho_{max} = 0.322$ e Å⁻³ $\Delta\rho_{min} = -0.198$ e Å⁻³ 3283 observed reflections $[I > 3\sigma(I)]$ $R_{int} = 0.025$ $\theta_{max} = 75^{\circ}$ $h = -10 \rightarrow 0$ $k = -10 \rightarrow 10$ $l = 0 \rightarrow 26$ 3 standard reflections frequency: 60 min intensity decay: 3.3%

Extinction correction: SHELXTL/PC (Sheldrick, 1991) Extinction coefficient: 0.012 (2) Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Cu $K\alpha$ radiation $\lambda = 1.54184$ Å Cell parameters from 25 reflections $\theta = 21.7-28.0^{\circ}$ $\mu = 1.49 \text{ mm}^{-1}$ T = 293 KPlate $0.62 \times 0.45 \times 0.30 \text{ mm}$ Colourless

 $R_{int} = 0.0173$ $\theta_{max} = 75^{\circ}$ $h = -11 \rightarrow 0$ $k = 0 \rightarrow 13$ $l = -21 \rightarrow 0$ 3 standard reflections frequency: 60 min intensity decay: 1.7%

Extinction correction: SHELXTL/PC (Sheldrick, 1991) Extinction coefficient: 0.007 (2) Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

$C_{12}H_{21}O_{12}^{-} \ \text{AND} \ C_{6}H_{11}O_{7}^{-} \ \text{SALTS}$

Compound (4	4)				C6	0.7408 (11)	0.6908 (5)	0.5740 (4)	0.045 (2)
Crystal data					C7	0.5006 (6)	0.4072 (4)	0.6771 (3)	0.026(1) 0.027(1)
c.);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		0			C_{9}	0.2417 (6)	(0.4322(4)) (0.4229(4))	0.7646(3)	0.026 (1)
Ca ²⁺ .2C ₆ H ₁₁ C	$a^{2+}.2C_6H_{11}O_7^{-}.5H_2O$ Cu $K\alpha$ radiation			C10	0.0609 (6)	0.4456 (4)	0.7557 (4)	0.030(1)	
$M_r = 520.45$	$A_r = 520.45$ $\lambda = 1.54184$ A			C11	0.5380 (6)	0.3146 (4)	0.7123 (3)	0.026(1)	
Monoclinic	Monoclinic Cell parameters from 25			C12	0.4433 (6)	0.2412 (4)	0.6731 (4)	0.029(1)	
<i>C</i> 2			reflections		(2)				
a = 12.4263 ((7) A	θ :	$= 19.0 - 29.0^{\circ}$		KI	0.4415(1)	0.7126(1)	0.6754(1)	0.0403 (2)
b = 7.6563 (9)	P) Å	μ	$= 3.49 \text{ mm}^{-1}$		01	0.0161 (2)	0.6538 (2)	0.5758(1)	0.0283 (4)
c = 11.094 (1)) A	T	= 293 K		02	-0.4002 (2)	0.7113 (2)	0.5629(1)	0.0343 (4)
$\beta = 102.073$ ((6)°	Pl	ate		03	-0.3575(2)	0.4414 (2)	0.4924(1)	0.0400 (4)
V = 1032 (1)	Å ³	0.:	$55 \times 0.43 \times 0.5$	15 mm	04	-0.0.196 (2)	0.4910(2)	0.4611(1)	0.0370(4) 0.0540(5)
Z = 2		Co	olourless		0.0	-0.1206(2)	0.8657(2)	0.6011(1)	0.0260 (4)
$D_x = 1.674$ (2)	2) Mg m ^{-3}				07	-0.3165 (2)	().9232(2)	0.7050(1)	0.0433 (5)
	-				08	0.1984 (2)	0.8734(2)	0.6365(1)	().()377 (4)
Data collectio	on				09	0.1288 (2)	0.9805 (2)	0.7679(1)	0.0353 (4)
Enraf_Nonius	CAD-4	11	23 observed re	flections	010	(0.3609(2))	1.1893 (2)	0.0208(1)	0.0390(4) 0.0357(4)
diffructorne	ter	11	$L > 3\sigma(D)$	neenons	012	-0.3350(2)	1.2559 (2)	0.6808(1)	0.0410 (5)
		D	[I > 50(I)]		ĊĹ	-0.1323(2)	0.7074 (2)	0.5954(1)	0.0253 (4)
$\omega/2\theta$ scans			$n_t = 0.0110$		C2	-0.2496 (2)	0.6655(2)	0.5444(1)	0.0253 (4)
Absorption co	orrection:	θ_{π}	ax = 73		C3	-0.2502 (2)	0.4913 (2)	0.5388(1)	0.0283 (4)
ψ scan (No	orth, Phillips	s n	$= 0 \rightarrow 15$		C4	-0.0898(2)	0.4340 (2)	0.5214(1)	0.0310(4)
& Mathews	s, 1968; Fre	nz, <i>k</i>	$= 0 \rightarrow 9$		(5 (6	0.0236 (2)	().4889(2) ().4456(2)	0.5719(1)	0.0287 (4)
1986)		1 =	$= -13 \rightarrow 13$		C7	-0.0675(2)	0.9175 (2)	0.6625(1)	0.0243 (4)
$T_{\min} = 0.68$	$S1, T_{max} =$	3	standard reflect	ions	C8	0.0907 (2)	0.9904 (2)	0.6533(1)	0.0253 (4)
0.999			frequency: 60	min	С9	0.1530(2)	1.0700(2)	0.7129(1)	0.0270 (4)
1176 measure	d reflection	S	intensity decay	: none	C10	0.3237 (2)	1.1038 (2)	0.7026(1)	0.0273 (4)
1124 indepen	dent reflecti	ons			CH	-(0.1894(2))	1.0203 (2)	().69[4(1)	0.0260(4)
					C12	-0.2.307 (2)	1.1.214 (2)	0.0488(1)	0.0.5.77 (4)
Refinement					(3)				
Refinement o	n <i>F</i>	(/	$\sqrt{\sigma}_{max} = 0.012$	2	Na	0.1930(1)	0.0463(1)	0.9810(1)	0.0257 (3)
R = 0.0264		Δ	$\rho_{max} = 0.226 \text{e}$	Å - 3	01	-0.0439 (2)	-0.0214(2)	1.0370(1)	0.0210(4)
wR = 0.0204			$\rho_{\text{max}} = 0.220 \text{ c}$	ρ ^{Δ-3}	02	0.1250(3) 0.1747(2)	-0.2288(2) 0.0271(2)	1.1839(1)	0.0337 (4)
R = 1.765			$p_{\min} = 0.207$	tion: none	04	0.1747(2) 0.1284(2)	0.0274(2) 0.1643(2)	1.1025(1)	0.0293 (4)
3 = 1.703	-	L. A.	Atomic southering fastors		05	-0.2368(3)	0.2726 (2)	1.0847(1)	0.0377 (4)
1123 reflections		А	from International Tables		O6	0.0779(2)	-0.2046 (2)	1.0135(1)	0.0193 (4)
14/ paramete	rs		for X and Constallography		07	-0.0804(2)	-0.5064 (2)	0.9418(1)	0.0260 (4)
H atoms: see	below	•	for X-ray Crys	tallography	08	0.1653 (2)	-0.2692(2)	0.8558(1)	0.0250(4)
$w = 1/[\sigma^{-}(F)]$	$+ 0.0005F^{-}$	J	(1974, VOI. IV)		09	-0.1353(3)	-0.0197(2) -0.2144(2)	().8002(1)	0.0277(4) 0.0387(4)
					010	0.0249 (2)	-0.0540(2)	0.7138(1)	0.0337 (4)
Table 1. Fra	actional at	omic co	ordinates and	equivalent	012	-0.1341 (2)	-0.4297 (2)	1.0950(1)	0.0250(4)
isotropic	displacem	ent parar	neters (Ų) foi	(1)-(4)	OIW	-0.2239 (3)	0.1572 (3)	0.8071(1)	0.0520(6)
•					C1	0.0044 (2)	-0.1373(2)	1.0738(1)	(0.0180(4))
	$U_{\rm eq} = (1)$	$(3)\Sigma_i\Sigma_jU$	$_{ij}a_i^*a_j^*\mathbf{a}_i\cdot\mathbf{a}_j$.		C2 C3	0.1114(2) 0.0610(3)	-0.1125(2) -0.0034(3)	1.1411(1)	0.0207(4) 0.0233(4)
	r	v	7	U_{co}	C4	0.0122 (3)	0.1137(2)	1.1486(1)	0.0237 (4)
(1)		•'	~		C5	-0.1056 (3)	0.0689(2)	1.0913(1)	0.0213 (4)
Ca 0.22	237 (1)	0.6328 (1)	0.7718(1)	0.0273 (3)	C6	-0.1704 (3)	0.1743 (3)	1.0392(1)	0.0263 (4)
Cl 0.2	707 (3)	0.5777 (1)	0.4833(1)	0.0483 (4)	C7	-0.0123(2)	-0.2839(2)	0.9633(1)	0.0180(4)
01 0.6	392 (5)	0.5445(3)	().5754(2)	0.0307 (8)	C8 C0	0.0160(3)	-0.2547(2) -0.1251(2)	0.8752(1)	0.0187 (4)
02 0.74	401 (6)	0.5412(5)	() 3452(3)	0.035(1)	C10	-0.0523(3)	-0.1316(2)	(0.7524(1))	0.0237 (4)
O4 0.6.	392 (6)	0.6241 (3)	0.4154 (3)	0.0383 (8)	C11	0.0207 (3)	-0.4257 (2)	0.9818(1)	0.0193 (4)
O5 0.7.	321 (6)	0.6975 (4)	0.6599(3)	0.046(1)	C12	0.0108 (3)	-0.4583 (2)	1.0699(1)	0.0213 (4)
O6 0.5	317 (5)	0.4061 (3)	0.5904(2)	0.0283 (8)					
07 0.70	053 (4)	0.2924 (3)	0.7010 (3)	0.0327 (9)	(4) Cu	1/2	0.7611	1/2	0 0202 (4)
08 0.3	028 (5) 219 (4)	0.5258 (5)	0.0028(2) 0.8163(2)	0.0325(8) 0.0290(8)	011	0.1374(1)	0.7559 (3)	0.3607 (2)	0.0276 (4)
O10 0.0	127 (5)	0.5189 (3)	0.7801 (3)	0.038 (1)	012	0.3150(1)	0.8323 (3)	0.4017(2)	0.0218(4)
O11 -0.02	256 (5)	0.3860 (3)	0.7218 (4)	0.050(1)	O2	0.3806(1)	0.5094 (3)	0.4586(1)	0.0213 (4)
O12 0.4	891 (4)	0.1586 (3)	0.7107 (3)	0.033(1)	03	0.3297 (2)	0.5759 (3)	0.1926(1)	0.0266 (4)
O1W 0.5	314 (7)	0.1963 (4)	0.4540(3)	0.060(1)	04	0.2516(1)	0.1696 (3)	0.3200 (2)	0.0241 (4)
0.2W = 0.2	193 (10) 272 (5)	0.7023(4)	0.0579(3)	0.070 (2)	05	().3947(2)	(0.1705(5)) (0.0202(4))	0.0179(2)	0.0230 (4)
O4W = 0.0	245 (6)	0.6333 (3)	0.9217 (3)	0.046 (1)	01W	0.4680(1)	0.7295 (4)	0.6992 (2)	0.0327 (4)
C1 0.6	693 (6)	0.4531 (4)	0.5634 (3)	0.027(1)	02 <i>W</i>	0.0765 (2)	-0.0818 (5)	0.1127 (2)	0.0616(6)
C2 0.6	860 (6)	0.4300 (4)	0.4734 (3)	0.029(1)	03W	1/2	1.0723 (5)	1/2	0.0383 (7)
C3 0.8	067 (7)	0.4914 (4)	0.4314 (3)	0.030(1)	CI	0.2393 (2)	0.7213(4)	0.3820(2)	0.0185 (4)
C4 0.7	807 (8) 724 (8)	U.3886 (4) () 5968 (4)	0.4530(4)	0.055(1)	C2 C3	0.2722(2) 0.2677(2)	().4618(4)	(0.2535(2))	0.0176(4)
		0.0700 (7)	0.0 100 (1)						

C4	0.3158 (2)	0.275	59 (4)	0.2566 (2)	0.0183 (4)	Table 3. Hydrogen-bonding geometry (Å, °) for (1)–(for (1)–(4)
C6	0.3189(2) 0.3831(2)	0.036	54 (4) 54 (4)	0.1283 (2) 0.1376 (2)	0.0202 (4)	D—H···A	D—H	H···A	$D \cdot \cdot \cdot A$	D — $\mathbf{H} \cdots \mathbf{A}$
						(1)				
						012—H12···03'	0.97(2)	1.74 (2)	2.7()9(6)	179.3 (15)
Table 2	. Selected	bond le	eneths ((Å) and an	gles (°) for	0^{2} -H ² ···01W	(1.96(2))	1.80(2) 1.86(2)	2.031 (0)	143.8(13)
			1) (1)		8.00 () j	$03 - H3 \cdots 010^{m}$	0.94(2)	1.89(2)	2.819(6)	171.7 (15)
		(1	()-(4)			O2W—H1 $W2$ ···O4"	0.96 (2)	1.98(2)	2.833 (8)	146.6 (15)
(1)						O9H9· · ·CI`	0.97 (2)	2.05 (2)	2.999 (4)	164.7 (15)
Ca—O7'		2.512 (5)	O8	Ca—O2W	68.9(2)	O5H5+++O12™	0.95(2)	2.13 (2)	2.864 (7)	133.2 (15)
Ca—O8		2.516 (4)	O8—	Ca—O3W	125.2 (2)	O8—H8· · ·Cl	0.99(2)	2.16(2)	3.073 (4)	153.8 (15)
Ca—O9		2.488 (5)	O8—	Ca—O4W	135.6 (2)	(2)				
Ca—010		2.447 (5)	09—	Ca—O10	65.5(1)	08—H8···O1	1.02(1)	1.78 (1)	2.794 (3)	174.7 (8)
Ca-O12		2.418 (3)	09—	Ca012'	77.9(1)	O5—H5· · ·O10 ^{\u}	0.92(1)	1.86(1)	2.762 (3)	166.3 (8)
Ca = O2W		2.4.58 (5)	09	Ca = O2W	131.0(2)	O7—H7· · ·O11 ^{\™}	0.88(1)	1.86(1)	2.649 (3)	149.1 (8)
$C_{a} = 0.3W$		2.377(4)	09_	$C_{a} = O_{3}W$	135.3 (2)	O9—H9· · · O12 [™]	0.97(1)	1.97 (1)	2.865 (3)	151.9 (8)
07^{1} C_{2}	-08	133.6 (1)	010	$-C_{1}-O_{1}^{2}$	143 4 (2)	O2—H2· · · O4 [™]	0.95(1)	2.04 (1)	2.905 (3)	151.2 (8)
07^{1} —Ca—	-08	136.9 (1)	010-	-Ca - O2W	109.9(2)	O9—H9· · ·O11	0.97(1)	2.10(1)	2.603 (3)	110.5 (8)
07 ¹ —Ca—	-010	145.7 (2)	010-	-Ca - O3W	73.8 (2)	$O3 - H3 \cdots O2$	0.93(1)	2.15(1)	2.804 (3)	126.2 (8)
07 ¹ —Ca—	-012'	66.2(1)	010-	-Ca—O4W	87.0 (2)	(3)				
07 ¹ —Ca—	-O2 <i>W</i>	75.8(2)	O12'-	-Ca-O2W	93.1 (2)	$O5-H5\cdots O10^{3}$	1.00(1)	1.75 (1)	2.689 (3)	153.9 (8)
07'Ca	-O3W	74.2 (2)	O12'-	—Ca—O3W	140.3 (2)	$07 - H7 \cdots O11^{in}$	().95 (1)	1.78(1)	2.7()9(2)	165.3 (8)
07 ¹ —Ca—	-O4 <i>W</i>	79.5 (2)	O12'-	—Ca—O4W	83.0(2)	012—H12···O3*	0.88(1)	1.80(1)	2.663 (2)	169.6 (8)
08—Ca—	09	62.6(1)	O2 <i>W</i> -	—Ca—O3W	79.4 (2)	$O4 - H4 \cdots O1 W^{AH}$	0.95(1)	1.81(1)	2.760 (3)	176.2 (8)
08—Ca—	D10	76.6(1)	O2W-	—Ca—O4W	154.4 (2)	$O2 - H2 \cdots O10^{m}$	0.93(1)	1.87(1)	2.766 (3)	160.5 (8)
08—Ca—	012'	86.3(1)	03 <i>W</i> -	—Ca—O4W	87.6 (2)	$O[W = H[W \cdots O8^{m}]$	0.96(1)	1.98(1)	2.893 (3)	158.2 (8)
(2)							(0.65(1))	1.99(1) 2.00(1)	2.394 (2)	127.0(0)
K1		2.740(2)	05—	K1—08	81.3(1)	03-H3011 ^x	(0.93(1))	2.00(1) 2.07(1)	2.876 (3)	15(18(8)
K1-05		2.806(2)	05—	K1011	145.6(1)	0.0-11.9	0.00(1)	2.07(1)	2.055(5)	150.0(0)
K1—07 ^{¹¹}		2.861 (2)	05—	K1—011'''	97.7 (1)	(4)	0.05 (1)	1.00/1.	2 705 (2)	1420.00
K1—08		2.666 (2)	05—	K1-012"	113.4 (1)	$04 - H4 \cdots 012^{-1}$	0.95(1)	1.88(1)	2.793 (3)	103.0(8)
K1-011		3.145 (2)	0/"	-K1-08	108.4 (1)	$01w - n2w1 \cdots 0.5$	0.90(1)	1.99(1)	2.607 (5)	141.2 (6)
KI-011"		2.664 (2)	0/"-	-KIOII	52.1(1)	Symmetry codes: (i) x-	$-\frac{1}{2}, \frac{1}{2}-y, 1$	-::(ii)]+	x, y, z: (iii)	$x_{1} - x_{1} - y_{2} - z_{2}$
NI-012	05	2.109(2)	07 -	-KI-OII	86.1(1)	$\frac{1}{2}$; (iv) $x - \frac{1}{2}, \frac{3}{2} - y, 1 - \frac{1}{2}$	z; (v) = -x,	$1 - y, \frac{1}{2} + z$	$(v_i) -x, \frac{1}{2}$	$+y, \frac{3}{2}-z; (vii)$
02 - K1 - K	-03 -07"	797(1)	0/ =	KI_012	66.4(1)	x, y - 1, z; (viii) $x - 1$,	y, z; (ix) - x	$x, y = \frac{1}{2}, \frac{3}{2}$	$-z:(x) - \frac{1}{2}$	$-x, -y, \frac{1}{2} + z;$
$02^{ii} - K1 - K1$	-08	97.8 (1)	08-	K1011"	151.7 (1)	$(xi) - x, y - \frac{1}{2}, \frac{5}{2} - z;$	$(xii) \frac{1}{2} + x, \frac{1}{2}$	-y, 2-z	$(xiii) \frac{1}{2} + x$,	$-\frac{1}{2}-y, \bar{2}-z;$
$02^{n} - K1 -$	-011	114.4(1)	08-	K1012"	89.9 (1)	$(xiv) - x, \frac{1}{2} + v, \frac{3}{2} - z$	$(xv) \frac{1}{2} - x$	$, -y, \frac{1}{2} + z$; (xvi) l – x	y, y, 1 - z.
02"-K1-	-011"	110.0(1)	011–	-K1011"	105.1(1)		-			
02"-K1-	-012"	165.3 (1)	011–	-KI-012"	57.6(1)	Table 4 Cal			(0) for (1) (1)
05-KI-	07"	158.8 (1)	011 ^m	-K1-012"	64.3 (1)	Table 4. Sele	rctea torsi	on angle	s() for (1)-(4)
(3)							(1)		(2)	(3)
(J) Na-01		2 484 (2)	04	Na-051	934(1)	01 - C1 - 06 - C7			- 87 1 (2)	-860(2)
Na-01		2.464(2) 2.455(2)	04	Na-05	101.9(1)	01 - 01 - 02 - 02	171 2 (4) – 1	1778(2)	166.8 (2)
Na-O5 ¹¹		2.278 (2)	05''-	-Na-06	161.7(1)	01 - C1 - C2 - C3	50.8 (6)	61.0 (2)	45.2 (2)
Na—O6		2.871 (2)	O5`'-	-Na-09	90.3(1)	01-C5-C4-04	63.3 (6)	64.9 (2)	56.1 (2)
Na—O7`		2.498 (2)	O5`'-	–Na—O12`	88.3(1)	01-C5-C4-C3	-60.4 (6) –	- 57.3 (2)	-63.2(2)
Na—O9		2.444 (2)	06—	Na—09	72.1(1)	01-C5-C6-05	6().6 (7)	68.5 (2)	180.0(2)
Na—O12`		2.377 (2)	06—	Na012`	83.5(1)	O2-C2-C1-O6	-72.2 (5) –	-65.9 (2)	-77.9(2)
O4—Na—	09	131.6(1)	09—	Na—O12`	78.5(1)	O2—C2—C3—O3	67.3 (6)	60.5 (2)	68.9(2)
04Na	012	149.9(1)	01	Na = 07	119.6(1)	02—C2—C3—C4	- 166.9 (5) —	177.9 (2)	- 166.8 (2)
OI-Na-	04	67.2(1)	04	$Na=07^{\circ}$	81.6(1)	03-C3-C2-C1	-1/1.9(4)	1/9.6 (2)	-1/1.9(2)
OI-Na-	05	152.0(1)	05	Na-07	98.7(1)	03 - 03 - 04 - 04	32.1 (0)	180.0 (2)	(2) 5,10
	00	74.8 (1)	07'-	Na-07	145 2 (1)	03 - 03 - 04 - 03 - 02	-726(6) –	-62 + (2)	-615(2)
01-Na-	015,	130.6(1)	07'-	-Na=012	684(1)	04-04-05-06	-543(7) –	-555(2)	-615(2)
01 I.u	012	120.0(1)	0.	114 012	00.111)	05-6-6-64	179.5 (5) –	170.5 (2)	-60.5(3)
(4)		2 202 (1)	0.0			06-C1-01-C5	-178.0 (4)	176.3 (2)	-172.3(2)
Ca012		2.392(1)	012	-Ca - O2	00.5(1) 86.0(1)	O6-C1-C2-C3	167.5 (4)	177.3 (2)	160.5 (2)
$C_a = 012$		2.392(1) 2.417(2)	012	$-C_{a}-01W^{a}$	967(1)	O6—C7—C8—O8	-73.8 (5) –	-68.3 (2)	55.6(2)
$C_{a}=02^{10}$		2.417(2)	012	$-C_{a}=0.1W$	768(1)	O6—C7—C8—C9	169.5 (4)	172.4 (2)	-71.9(2)
Ca—O1W		2.338 (2)	02_	Ca-02`"	74.3 (1)	06—C7—C11—07	61.9 (5)	68.0(2)	171.8 (2)
Ca-OlW	11	2.338(2)	02-	Ca—OIW	83.0(1)	06-C7-C11-C12	-57.2 (6) –	-54.0(2)	52.3 (2)
Ca—O3W		2.383 (4)	02—	Ca—O1W [^] "	87.5(1)	07_C11_C7_C8	175.7 (4) –	1/0./(2)	-66.8 (2)
O12—Ca-	-012`"	153.7 (1)	O2—	Ca—O3W	142.9(1)	0^{-1} -1^{-	57.9(5) \	08.8 (2) 160 0 (2)	-01.5(2)
O12—Ca-	-02	66.5(1)	O2`"-	—Ca—OIW	87.5(1)	08 - 08 - 01 - 01	108.8 (4) \	-77()(2)	-04.5(2) -40.8(2)
O12—Ca-	-02	139.6(1)	O2`"-		83.0(1)	08-68-69-610	63715	, –)	46.3 (2)	- 49.6(2)
012—Ca-		96.7(1)	O2 [\]		142.9(1)	09 - C9 - C8 - C7	63.5 (6	,)	43.6 (2)	78.2 (2)
012—Ca-	-01W"	86.0(1)	01W-	-Ca -OIW'''	168.1(1)	09-C9-C10-010	12.6 (7) –	176.6 (2)	-175.4 (2)
012	-0.5W	/0.8(1) 130.6/1	01W-	-ca - 0.5W	93.9(1)	09-C9-C10-011	-168.6 (5)	6.2 (2)	5.6 (3)
012	-02	1.39.0(1)	011		7,57(1)	O10C10C9C8	- 103.8 (6)	60.1 (2)	60.9 (3)
Symmetry	/ codes: (i) 1 –	$x, \frac{1}{2} + y, \frac{3}{2}$	-z;(ii)x	+1, y, z; (iii) 1-	$-x, y-\frac{1}{2}, \frac{3}{2}-z;$	O11-C10-C9-C8	75.1 (6) –	117.1 (2)	-118.1(2)

C1O1C5C6	-171.1 (5)	-172.8(2)	-171.5(2)
C1	131.1 (4)	113.2 (2)	128.7 (2)
C106C7C11	-108.3(5)	-120.5(2)	-110.0(2)
C1-C2-C3-C4	-46.1 (6)	-58.8(2)	-47.5(2)
C2-C1-O1-C5	-62.7 (6)	-64.9(2)	-55.4(2)
C2-C1-06-C7	172.2 (4)	155.1 (2)	154.0 (2)
C2-C3-C4-C5	50.8 (6)	57.5 (2)	55.9 (2)
C3-C4-C5-C6	-178.0(5)	-177.7(2)	179.2 (2)
C7-C8-C9-C10	-176.8 (4)	166.8 (2)	-160.4(2)
C8-C7-C11-C12	56.6 (6)	67.4 (2)	173.7 (2)
C9—C8—C7—C11	52.0 (6)	50.5 (2)	168.0(2)
(4)			
011—C1—C2—O2	-155.3 (2)	O4-C4-C3-C2	58.8 (3)
011—C1—C2—C3	82.9 (3)	04C4C5O5	53.5 (3)
012-C1-C2-02	24.4 (3)	O4-C4-C5-C6	-68.5 (3)
O12-C1-C2-C3	-97.5 (3)	O5-C5-C4-C3	-67.2 (3)
O2-C2-C3-O3	-68.8(3)	05-C5-C6O6	61.8 (3)
O2-C2-C3-C4	51.6 (3)	O6-C6-C5-C4	-174.5(2)
O3-C3-C2-C1	51.9 (3)	C1-C2-C3-C4	172.2 (2)
O3—C3—C4—O4	179.1 (2)	C2-C3-C4C5	-177.1(2)
O3-C3-C4-C5	-56.9(3)	C3-C4-C5-C6	170.8 (2)

Table 5. Asymmetry parameters (Duax & Norton, 1975) of six-membered rings in (1)–(3)

	(1)	(2)	(3)
$\Delta C_{s}(01)$	6.8 (3)	2.6 (2)	12.7(2)
$\Delta C_{s}(C1)$	15.2 (3)	3.1 (2)	12.4(2)
$\Delta C_{s}(C2)$	8.5 (3)	5.4 (2)	1.7 (2)
$\Delta C_2(O1-C1)$	15.6 (3)	1.6 (2)	17.8(2)
$\Delta C_2(C1-C2)$	16.7 (3)	5.6(2)	8.5 (2)
$\Delta C_2(C2-C3)$	1.6 (3)	5.9(2)	9.4 (2)

Data collection and cell refinement were performed using CAD-4 software (Schagen, Straver, van Meurs & Williams, 1989; Frenz, 1986). For all compounds, anisotropic displacement parameters were applied for all non-H atoms. H atoms were found in a difference Fourier map and refined as riding: isotropically for (2) and (4), and with fixed isotropic displacement parameters for (1) and (3). The absolute structures of (1)-(4) were determined by three methods: the Hamilton test (Hamilton, 1965), the Rogers η -test (Rogers, 1981), both using SHELXTL/PC (Sheldrick, 1991), and calculation of the Flack parameter x (Flack, 1983) using SHELXL93 (Sheldrick, 1993). Results for (1): $\eta = 1.04$ (4), $\eta_{inv} = -1.03$ (4); N =1587, $R_{\text{ratio}} = 1.006$, $\alpha < 10^{-6}$; x = 0.06 (4). For (2): $\eta =$ 1.01 (2), $\eta_{inv} = -1.00$ (2); N = 3035, $R_{ratio} = 1.688$, $\alpha < 10^{-9}$; x = 0.02 (1). For (3): $\eta = 1.4$ (3), $\eta_{inv} = 1.4$ (3); N = 1581, $R_{\text{ratio}} = 1.0015, \ \alpha = 2.5 \times 10^{-2}; \ x = 0.08 \ (16).$ For (4): $\eta =$ 1.23 (4), $\eta_{inv} = -1.19$ (4); N = 976, $R_{ratio} = 1.398$, $\alpha < 10^{-9}$; x = 0.01 (1). Structure solution and refinement were performed using SHELXTL/PC.

This research was supported by the Polish Scientific Research Council (KBN) under grant No. 4 0070 91 01. JB is grateful to the Foundation of Polish Science for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1260). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Angyal, S. J. (1980). Chem. Soc. Rev. 9, 415–428. Bugg, C. E. (1973). J. Am. Chem. Soc. 95, 908–913.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Cambridge Structural Database (1993). Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
 - Cook, W. J. & Bugg, C. E. (1973). Acta Cryst. B29, 215-222.
 - Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures. New York: Plenum.
 - Flack, H. D. (1983). Acta Cryst. A39, 876-881.
 - Frenz, B. A. (1986). Enraf-Nonius Structure Determination Package; SDP User's Guide. Version of 17 December 1986. Enraf-Nonius, Delft, The Netherlands.
 - Frush, H. L. & Isbell, H. S. (1963). Methods in Carbohydrate Chemistry. Vol. 2, edited by R. L. Whistler, pp. 14–15. New York: Academic Press.
 - Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
 - Jeffrey, G. A. & Fasiska, E. J. (1972). Carbohydr. Res. 21, 187-192.
 - Krestinger, R. H. & Nelson, D. J. (1976). Coord. Chem. Rev. 18, 38-41.
 - Król, B. W. (1986). Przem. Chem. 65, 249-251.
 - Lis, T. (1981). Acta Cryst. B37, 1957-1959.
 - Lis, T. (1984). Acta Cryst. C40, 376-378.
 - North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
 - Panagiotopoulos, N. C., Jeffrey, G. A., La Placa, S. J. & Hamilton, W. C. (1974). Acta Cryst. B30, 1421–1430.
 - Rogers, D. (1981). Acta Cryst. A37, 734-741.
 - Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
 - Sheldrick, G. M. (1991). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 - Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 1198-1200

m-Anisidinium Dihydrogenmonoarsenate

MOHAMED OULD ABDELLAHI AND TAHAR JOUINI

Département de Chimie, Faculté des Sciences, Campus Universitaire, Tunis 1060, Tunisia. E-mail: jouini@stardent. cck.tn

(Received 3 April 1995: accepted 18 September 1995)

Abstract

In the structure of $(1,3-CH_3O-C_6H_4-NH_3)^+$. $H_2AsO_4^-$, the $H_2AsO_4^-$ and $(1,3-CH_3O-C_6H_4-NH_3)^+$ entities alternate in layers perpendicular to the *a* axis. These organic and inorganic layers are held together in the crystal by $N-H\cdots O$ hydrogen bonds. The $H_2AsO_4^-$ groups are connected by hydrogen bonds to form pairs, with internal short $As\cdots As$ distances of 4.5 Å.

Comment

The structure and numbering scheme of the title compound, (I), are shown in Figs. 1 and 2. The As···As distance of 4.5 Å between pairs of $H_2AsO_4^-$ tetrahedra is significantly shorter than that observed in ethylenediammonium monohydro-